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ABSTRACT: The kinetics of the thermal degradation of
poly(propylene carbonate) (PPC) were investigated with dif-
ferent kinetic methods with data from thermogravimetric
analysis under dynamic conditions. The apparent activation
energies obtained with different integral methods (Ozawa–
Flynn–Wall and Coats–Redfern) were consistent with the
values obtained with the Kinssinger method (99.93 kJ/mol).
The solid-state decomposition process was a sigmoidal A3
type in terms of the Coats–Redfern and Phadnis–Deshpande

results. The influence of the heating rate on the thermal
decomposition temperature was also studied. The derivative
thermogravimetry curves of PPC confirmed only one
weight-loss step. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci
90: 947–953, 2003
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INTRODUCTION

Poly(propylene carbonate) (PPC), which can be syn-
thesized by the copolymerization of carbon dioxide
and propylene epoxide, as reported in many publica-
tions,1–3 is an aliphatic polycarbonate with reasonably
good mechanical and biodegradable properties and a
potentially wide range of applications,4–6 such as
binder resins, packing materials, adhesives, biode-
gradable materials, and ceramic processing. Therefore,
it is important to investigate the thermal stability of
this type of carbon dioxide-based resin because it can
determine the final properties of the material, such as
the upper temperature limit, the machining process,
the mechanism of the solid-state process, and the life-
time.

Thermogravimetric analysis (TGA) records the
mass change of a sample as a function of temperature
or as a function of time at a given heating rate (�).7

With thermogravimetric curves, many studies of ther-
mogravimetric data have been used for the estimation
of the kinetic parameters of degradation processes,
such as rate constants, activation energies, reaction
orders, and the Arrhenius pre-exponential factor (A).
Although these kinetic parameters depend on factors
such as the nitrogen atmosphere, sample mass, sample

shape, flow rate, �, and particle of the sample (espe-
cially �),8–10 TGA has widely been used because of its
simplicity and the information obtained from a simple
thermogram. In fact, many kinetic analytical methods
have been based on the scanning rate dependence of
TGA data.11–13

In this article, the thermal degradation of PPC was
investigated with dynamic thermogravimetry (TG).
One objective was to study the effect of � on the
thermal decomposition temperature (T) and weight-
loss percentage (a). The other objective was to inves-
tigate the kinetics of the thermal degradation of PPC
with different kinetic methods (differential and inte-
gral) under nonisothermal conditions, including the
mechanism and apparent activation energy of thermal
degradation.

THEORETICAL BACKGROUND12,14,15

In the reaction B(s) 3 D(s) � C(g), where B(s) is the
starting material, D(s) and C(g) are the different prod-
ucts during the disappearance of B(s), the disappear-
ance rate (d�/dt) can be defined as follows:

da
dt � kf�a� (1)

where � is a fraction of B decomposed at time t and
f(�) is a temperature-independent function of conver-
sion �. k is the rate constant given by the Arrhenius
equation:

k � A exp��E/RT� (2)
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where A is the frequency factor or pre-exponential
factor and E is the activation energy of the reaction.
Substituting the Arrhenius equation into eq. (1), we
obtain

da
dt � A exp��E/RT�f�a� (3)

If the temperature of a sample is changed by a con-
trolled and constant value of � (� � dT/dt), the
variation of the degree of conversion can be analyzed
as a function of temperature, which depends on the
time of heating.

Therefore, the reaction rate gives

da
dT �

A
�

exp��E/RT�f�a� (4)

Separating the variable and rearranging and integrat-
ing eq. (4), we obtain

g�a� � �
ao

ap da
f�a�

�
A
� �

To

Tp

exp��E/RT� dT (5)

If we define x � E/RT and integrate the right-hand
side of eq. (5), we obtain

A
� �

To

Tp

exp��E/RT� dT �
AE
�T p�x� (6)

After taking logarithms, we obtain

log � � log
AE

g�a�R � log p�x� (7)

where p(x) � (e�x/x2) ¥n�1 (�1)n�1 (n!/xn�1) and g(a)
is the function of conversion. The function p(x) can be
expressed by some approximate equation when x
meets certain conditions.

For polymers, the integral function g(a) is either a
sigmoidal function or a deceleration function. Table I
presents different expressions of g(a) for the different
solid-state mechanisms.10 These functions adequately
estimated the reaction solid-state mechanism for
nonisothermal TG experiments.

In this article, we use different mathematical treat-
ments to explain the previous equation. For the inte-
gral methods, we use an approximate integration of
eq. (6) with different mathematics. These methods are
now described.

Kinssinger method13

This method derives from the correlation between the
peak temperature (Tp) and �. Suited for more than
four thermal analytical curves of the derivation type, it
is an efficient differential method. With this method,
the apparent activity energy can be estimated without
a precise knowledge of the reaction mechanism:

ln
�

Tp
2 � �ln

AR
E � ln�n�1 � ap�

n�1�� �
E

RTp
(8)

where Tp is the temperature corresponding to the
maximum weight-loss rate, ap is the maximum con-

TABLE I
Algebraic Expressions for g(a) for the Most Frequently Used Mechanisms of Solid-State Processes14,22

Symbol g(a) Solid-state processes

Sigmoidal Curves
A2 [�ln�1 � a�]1/2 Nucleation and growth [Avrami–Erofeev, eq. (1)]
A3 [�ln(1�a)]1/3 Nucleation and growth [Avrami–Erofeev, eq. (2)]
A4 ��ln�1 � a��1/4 Nucleation and growth [Avrami–Erofeev, eq. (3)]

Decleration Curves
R1 a Phase-boundary-controlled reaction (one-dimensional movement)
R2 2�1 � ln�1 � a�1/2� Phase-boundary-controlled reaction (contracting area)
R3 3�1 � ln�1 � a�1/3� Phase-boundary-controlled reaction (contracting volume)
D1 a2 One-dimensional diffusion
D2 �1 � a�ln�1 � a� � a Two-dimensional diffusion (Valensi equation)
D3 [1�(1�a)1/3]2 Three-dimensional diffusion (Jander equation)

D4 �1 �
2
3

a� � �1 � a�2/3 Three-dimensional diffusion (Ginstling–Brounshtein equation)

F1 � ln�1 � a� Random nucleation with one nucleus on the individual particle

F2

1
1 � a

Random nucleation with two nuclei on the individual particle

F3

1
�1 � a�2 Random nucleation with two nuclei on the individual particle
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version, and n is the reaction order. �, A, and E have
already been defined.

The following three kinds of methods are integral
methods.

Ozawa–Flynn–Wall method11

This method uses the Doyle approximation,15 that is,
when 20 � x � 60 is true, the function p(x) can be
adopted into the following approximation:

log p�x� � �2.315 � 0.4567x (9)

Substituting eq. (9) to eq. (7), we obtain

log � � log
AE

g�a�R � 2.315 �
0.4567E

RT (10)

Therefore, if a series of experiments are run at differ-
ent values of �, the apparent activation energy (E) can
be obtained from a plot of log � against 1/T for a fixed
degree of conversion. The slope of such a line is given
by �0.4567E/R (where R is a correlation coefficient)
without knowledge of the reaction order.

Coats–Redfern method12

The Coats–Redfern method uses an asymptotic approx-
imation for the resolution of eq. (5) at different conver-
sion values. If (2RT)/E3 0 is true for the Doyle approx-
imation,15 we obtain in a natural logarithmic form

ln
g�a�

T2 � ln
AR
�E �

E
RT (11)

According to the different degradation processes, with
the theoretical function g(a), which is listed in Table
I,10 we can obtain the apparent activity energy and
frequency factor from the slope of the plot, ln[g(a)/R2]
versus 1/T, as well as the valid reaction mechanism.

Phadnis–Deshpande method16

When taking function p(x) as two former terms, we
obtain:

g�a� �
ART2

�E �1 �
2RT

E �exp��E/RT� (12)

Rewriting eq. (12) by substituting eq. (4) and rearrang-
ing it, we obtain

f�a�g�a� �
RT2

E �1 �
2RT

E � da
dT (13)

Passing over the comparatively small term 2R2T3/E2,
we can shorten eq. (13):

f�a�g�a� �
RT2

E
da
dT (14)

Alternatively, with the integration of eq. (14), we obtain

g	�a� � �
E

RT (15)

where g	(a) is equal to 
f(a)g(a)da. The integral function
g	(a) is listed in Table II.

This method can determine the dependence of reac-
tion mechanism on the functional form of a based on the
linearity of the plot of f(a) and g(a) versus T2da/dT, or
g	(a) against 1/T and the apparent activity energy, which
can be obtained by other methods (in this study, with the
Kinssinger and Ozawa–Flynn–Wall methods). The plot
of g	(a) versus 1/T is linear with the proper functional
form of a. The slope of this plot, if multiplied by R, gives
the value of E. The application of a method such as the
Coats–Redfern method gives a means of acquiring the
valid reaction mechanism.

EXPERIMENTAL

Materials

The PPC resin was synthesized from the copolymeriza-
tion of carbon dioxide and propylene oxide according to
the literature.17,18 The number-average molecular weight
and polydispersity of PPC were 1.3 � 104 and 3.4, re-

TABLE II
g� (a) for Frequently Used Solid-State Reaction

Mechanisms in the Phadnis–Deshpande Method16

g	 (a) Reaction mechanism

ln a Power law (1)
2 ln a Power law (2)
ln[1 � (1 � a)1/3] Phase boundary (contracting

sphere; 3)
ln[1 � (1 � a)1/2] Phase boundary (contracting

cylinder; 4)
1
2

ln[� ln(1 � a)] Nucleation and nuclei
growth (5;
Avrami–Erofeev nuclei
growth)

1
3

ln[� ln(1 � a)] Nucleation and nuclei
growth (6;
Avrami–Erofeev nuclei
growth)

1
4

ln[� ln(1 � a)] Nucleation and nuclei
growth (7;
Avrami–Erofeev nuclei
growth)

ln[(1 � a)ln(1 � a) � a] Valensi two-dimensional
diffusion (8)

2 ln[1 � (1 � a)1/3] Jander, three-dimensional
diffusion (9)

ln[1�2
3

a�(1�a)2/3] Brounshtein–Ginstling,
three-dimensional
diffusion (10)
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spectively, as measured with a gel permeation chroma-
tography system on a Waters 400 spectrometer (Milford,
USA), with tetrahydrofuran as an eluent.

TGA

TGA was performed with a PerkinElmer TGA7 (New
York) instrument. The polymer sample (9.5 � 0.5 mg)
was stacked in an open platinum sample pan, and the
experiment was conducted under a nitrogen gas at-
mosphere with various values of � (5, 10, 15, 20, and
30°C/min) from 60–400°C to obtain the residual
weight curves of the PPC resin. The nitrogen gas rate
was 20 mL/min.

RESULTS AND DISCUSSION

Figure 1(a,b) illustrates the TG and derivative thermo-
gravimetry (DTG) curves, respectively, from the ther-
mal decomposition of PPC at different � values. The
TG curves were smooth weight-loss curves. The DTG
curves showed only a maximum-weight-loss-rate (da/
dt) peak. This indicated that the decomposition corre-
sponded to a single-stage decomposition reaction in
which the values of decomposition temperature (T)
were well defined. With increases in �, the TG and
DTG curves shifted toward the high-temperature
zone. The decomposition behaviors at all � values
were similar.

Figure 1 (a) TG and (b) DTG curves of PPC thermal degradation at different values of �.
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Figure 2 presents the influence of � on T. The tem-
perature at the onset of weight loss (Ti) and the tem-
perature of the final decomposition (Tf) were obtained
from the TG curve with the tangent method. Tp, the
minimum of the DTG curve peak, is shown. Figure 2
shows that T increased with �, indicating that � was
the important factor affecting T. These factors were
related as follows:

Ti � 472.8 � 1.23�

Tp � 478.4 � 1.53�

Tf � 480.5 � 1.85�

The increase in T with increasing � was the result of
the heat lag of the process.19 T can be expressed more
exactly as [T(0)] when � is approximately zero: Ti(0)
� 472.8 K, Tp(0) � 478.4 K, and Tf(0) � 480.5 K.

EVALUATION OF THE ACTIVATION ENERGY

With the Kinssinger method13 and the experimental
data measured in the TG curves (Fig. 1), the activation
energy for the decomposition of the PPC system was
estimated from the slope of a straight line of ln(�/Tp

2)
versus 1000/Tp, as shown in Figure 3. From the slope

Figure 3 Kinssinger method applied to experimental data at different values of �.

Figure 2 Relationship of T and � for PPC: (Œ) Tf, (■) Tp, and (F) T0.
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of the plot, the apparent activation energy could be
calculated as E � Slope � R � 99.93 kJ/mol. The
apparent activation energies were also evaluated with
the Ozawa–Flynn–Wall method. It was applicable to
integral-type DTG curves. According to eq. (9), the
plot of log � versus 1000/T at a given conversion gave
a straight line. In this case, we used � values of 5, 10,
15, and 30°C/min. Figure 4 shows nearly parallel fit-
ted straight lines, indicating the applicability of this
method to our system in the conversion range studied.
Table III shows the activation energies corresponding
to different conversions. From these values, a mean
value of 94.42 kJ/mol was obtained. By the compari-
son of this last value with the activation energy calcu-
lated with the Kinssinger method, a difference of 5.51
kJ/mol was found.

These two methods have the advantage of not re-
quiring previous knowledge of the reaction mecha-
nism for solving the activation energy. Therefore,
some authors20,21 have used the activation energies
obtained with these methods to validate their thermal
degradation mechanism models.

Many mathematical methods have been postulated
in the literature14,22 for the affirmation of the mecha-
nism of a solid-state reaction from thermoanalytical
curves obtained isothermally or nonisothermally. In
general, the correlation coefficient of a plot for differ-
ent mechanism functions has been regarded as stan-
dard for the determination of the reaction mechanism,
but sometimes the correlation coefficients of the lines
have slight differences; in this case, it is necessary to
determine the mechanism in terms of other supple-
mentary methods.23 We used the Coats–Redfern
method and Phadnis–Deshpande method to investi-
gate the model of the PPC decomposition by compar-
ing the activation energy values with the Kinssinger
method or Ozawa–Flynn–Wall method calculations
by way of the relative linearity of the plot.

TABLE IV
Activation Energies (Es) Obtained with the

Coats–Redfern Method for Several Solid-State Processes
at 5°C/min

Mechanism E (kJ/mol) R

A2 153.14 0.9966
A3 99.52 0.9964
A4 72.66 0.9962
R1 295.06 0.9957
R2 10.56 0.9857
R3 4.66 0.9657
D1 598.03 0.9958
D2 610.49 0.9962
D3 623.38 0.9965
D4 614.90 0.9963
F1 314.27 0.9967
F2 31.34 0.9910
F3 70.50 0.9928

Figure 4 Typical plots of log � versus 1000/T at several conversions in the range of 4–24% in steps of 4% (Ozawa–Flynn–
Wall method).

TABLE III
Activation Energies (Es) Obtained with the

Ozawa–Flynn–Wall Method

a (%) E (kJ/mol) R

4 97.43 0.99584
8 96.30 0.99442

12 95.61 0.99854
16 93.21 0.9999
20 91.93 0.99989
24 92.17 0.99973
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The apparent activation energy corresponding to
different g(a) values for sigmoidal and decelerated
mechanisms (Table I) could be obtained at constant
values of � with the Coats–Redfern equation from a
fitting of ln[g(a)/T2]–1000/T plots. Table IV shows the
activity energies and correlation at � � 5°C/min. The
linearity of the plot of ln[g(a)/T2] versus 1000/T for
R2, R3, F2, and F3 was bad. Therefore, when we exam-
ined the correlation coefficient (good plot linearity) as
the standard, R2, R3, F2, and F3 degradation processes
were excluded first. In addition, when we compared
the activation energies in Table IV, at � � 5°C/min,
we found that the apparent activation energies were in
good agreement with those obtained from the Kins-
singer method and Ozawa–Flynn–Wall method (An-
type mechanism). Table IV shows that the best agree-
ment occurred when the activation energy corre-
sponding to A3 was 99.52 kJ/mol, very close to the
value of 99.93 kJ/mol obtained from the Kinssinger
method, indicating that the pyrolysis of PPC probably
followed a sigmoidal (An) type; that is, the rate-con-
trolling process obeyed the random nucleation
Avrami–Erofeev equation .

To further confirm the thermal degradation behav-
ior, we also calculated the apparent activation ener-
gies via the Phadnis–Deshpande method in its integral
form at � � 5°C/min. The values of the activation
energies according to this method are listed Table V.
From Table V, it can be seen that the correlations of all
the plots were good, but only when the thermal pro-
cess obeyed the Avrami–Erofeev equation [eq. (2);
Table II]; the value of the apparent activation energy
of PPC degradation was calculated to be 107.33 kJ/
mol, close to the values from the Kinssinger and
Ozawa–Flynn–Wall methods. This result further sup-
ported the An-type mechanism.

Finally, both the Coats–Redfern method and Phad-
nis–Deshpande method led to plots with good linear-

ity with all functional forms of a, except for R2, R3, F2,
and F3 with the Coats–Redfern method. In other
words, it was difficult to obtain the exact reaction
mechanism for the thermal degradation of PPC with
only the correlation coefficient of a plot based on
either eq. (11) or eq. (15).

CONCLUSIONS

The effects of � on T were studied, and we found that
the degradation temperature increased with an in-
crease in � and that the PPC thermal degradation
proceeded via a one-step process. The apparent acti-
vation energies of the PPC thermal degradation calcu-
lated with the Kinssinger method and Ozawa–Flynn–
Wall method were in good agreement with each other.
A sigmoidal An-type thermal degradation mechanism
for PPC was followed according to the Coats–Redfern
and Phadnis–Deshpande methods.
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Reaction mechanism
E

(kJ/mol) R

Power law (1) 302.88 0.9959
Power law (2) 605.84 0.9959
Phase boundary (3) 315.60 0.9966
Phase boundary (4) 312.36 0.9964
Nucleation and growth [5; Avrami, eq. (1)] 161.04 0.9969
Nucleation and growth [6; Avrami, eq. (2)] 107.33 0.9969
Nucleation and growth [7; Avrami, eq. (3)] 80.48 0.9969
Valensi, two-dimensional diffusion (8) 618.31 0.9963
Jander, three-dimensional diffusion (9) 631.20 0.9966
Brounshtein–Ginstling, three-dimensional

diffusion (10) 622.64 0.9964
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